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Evaluating the performance 
of Bayesian and frequentist 
approaches for longitudinal 
modeling: application 
to Alzheimer’s disease
Agnès Pérez‑Millan1,2, José Contador1, Raúl Tudela3, Aida Niñerola‑Baizán3,4, 
Xavier Setoain3,4, Albert Lladó1,5, Raquel Sánchez‑Valle1 & Roser Sala‑Llonch2,3*

Linear mixed effects (LME) modelling under both frequentist and Bayesian frameworks can be used 
to study longitudinal trajectories. We studied the performance of both frameworks on different 
dataset configurations using hippocampal volumes from longitudinal MRI data across groups—healthy 
controls (HC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD) patients, including 
subjects that converted from MCI to AD. We started from a big database of 1250 subjects from the 
Alzheimer’s disease neuroimaging initiative (ADNI), and we created different reduced datasets 
simulating real‑life situations using a random‑removal permutation‑based approach. The number of 
subjects needed to differentiate groups and to detect conversion to AD was 147 and 115 respectively. 
The Bayesian approach allowed estimating the LME model even with very sparse databases, with high 
number of missing points, which was not possible with the frequentist approach. Our results indicate 
that the frequentist approach is computationally simpler, but it fails in modelling data with high 
number of missing values.

The availability of longitudinal data-repeated measures of the same subjects over time-provides the opportunity to 
study trajectories of disease biomarkers. This offers an unquestionable value, as measures of change and evolution 
can complement cross-sectional analyses—mainly based on group differences at a specific time point—into the 
understanding of neurological diseases and the evaluation of disease-modifying treatments. However, real-life 
longitudinal databases are often characterized by high levels of noise, high variability, and missing points that 
lead to unbalanced data. All these factors represent a challenge when creating the models and often limit their 
interpretability. In this context, the use of linear mixed effects (LME) models offers a powerful and versatile 
framework for analysing longitudinal data, being more adequate than classical approaches such as repeated 
measures analysis of variance (ANOVA) or cross-sectional analysis of percent  changes1–3.

In addition, when these biomarkers are obtained from neuroimaging data, there are additional challenges, 
as there are strong dependencies within subjects and timepoints. In this sense, besides the clear dependencies 
between the different measures of one subject, there are also dependencies between subjects that need to be 
modelled. LME models attempt to reconcile these schemes by combining fixed and random effects, where fixed 
effects are assumed to represent those parameters that are the same for the whole population, while random 
effects are group dependent variables assumed to consider the variance in the data explained over time and 
subject. In our case, the random effects will take into account the variability of the non-independent measures 
from different  subjects4–6 .
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After data modelling, LME models are usually followed by statistical inference procedures, which allow the 
researcher to generate questions about the model and to further evaluate their statistical significance and clini-
cal relevance. In this sense, while statistical significance is well established to p-values < 0.05, or equivalent, the 
assessment of clinical relevance has not yet a standard  analysis7. It has been suggested that clinical relevance 
can never be determined form p-values  alone8, and complementary statistics should emerge to overcome this 
limitation in interpretability.

Historically, the dominant approach for performing the full procedure of LME modelling + statistical inference 
has been the Frequentist LME (FLME) approach. However, different methods using a Bayesian LME (BLME) 
approach have been  suggested3,9. As suggested in the editorial of Anna G.M. Temp et al.10, Bayesian statistics can 
be used jointly with frequentist approaches to draw clinically relevant conclusions that can complement classical 
studies based uniquely on statistical significance.

In general words, the FLME approach is based on sampling distributions and on the Central Limit 
 Theorem11,12, and it treats the population parameters of interest as fixed  values11. While in BLME, parameters 
are estimated from the population distribution, given the evidence provided by the observed  data11. BLME is con-
sidered a more natural approach to answer a question, since it estimates the parameters of interest directly from 
the population distribution instead of estimating them from the sampling  distribution13. The Bayesian approach 
treats the parameters of interest as random variables that can be described with probability  distributions11 . 
These posterior distributions can be compared directly without referring to statistical results of multiple tests. 
Overall, the differences in comparing frequentist vs Bayesian approaches in different fields have opened a debate 
in several  fields14–17.

Alzheimer’s disease (AD) is clearly one of the research fields that will benefit from the development of lon-
gitudinal statistical methods. It is believed that AD is a slowly evolving process that likely begins years before 
the clinical symptoms are  manifested18,19 . Therefore, there is a strong interest in identifying subjects at high risk 
before the full clinical criteria for AD dementia are  met20,21 , as well as in giving reliable prognosis at the sub-
ject’s level. The existence of public available databases, such as the Alzheimer’s disease neuroimaging initiative 
(ADNI) has facilitated the definition and validation of neuroimaging biomarkers for  AD22 . In this sense, the 
hippocampal volume (HV), derived from structural Magnetic Resonance Imaging (MRI) data, has become one 
of the most widely used biomarkers. Compared with healthy aging, HV is progressively affected in AD, being 
already reduced in patients with Mild Cognitive Impairment (MCI) due to AD and more strongly affected in 
advanced AD  stages23–25.

In the recent years, the longitudinal trajectories of some AD biomarkers using frequentist approaches have 
been widely  described1,9,26. On the other hand, the attempts to incorporate Bayesian statistics have shown prom-
ising  results2,3,9. Even if frequentist and Bayesian schools represent two different schools of thinking, they often 
complement to each other. In the present work we analysed longitudinal MRI data from the ADNI dataset, 
using both FLME and BLME approaches. We performed simulations of real-life datasets derived from a public 
big database to explore the robustness of the methods with limited sample sizes and missing data using both 
approaches. Our goal was to evaluate the pros and cons of these approaches in real-life scenarios. For this, we 
create (simulate) datasets that incorporate the common handicaps found in clinical studies, e.g., low number of 
participants, missing data points or unbalanced sets with the aim to provide recommendations for further studies 
as regards the use of frequentist and Bayesian approaches, whilst illustrating the limitations of both approaches 
and bringing attention to statistical significance and clinical relevance.

Materials and methods
Data. We used longitudinal brain MRI data (T1-weighted scans, combining 1.5 and 3.0 Tesla) from the ADNI 
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by Principal 
Investigator Michael W. Weiner, MD. Including participants from ADNI-1, ADNI-GO, ADNI-2 and ADNI-3. 
Scans had been previously preprocessed with the FreeSurfer Longitudinal  stream27, as explained  elsewhere28. 
We focus our analyses on the HV, as it is a common AD biomarker and we include the total intracranial volume 
(ICV), as a known confound in neuroimaging studies. Therefore, we downloaded HV, ICV and demographics 
from the data server.

We included AD dementia and MCI patients, as well as Healthy control (HC) participants, as labelled by the 
ADNI  consortium21. According to their clinical evolution, we further created the following groups:

1. Stable HC (sHC) subjects who were diagnosed as HC throughout the follow-up period.
2. Converter HC (cHC) subjects who were diagnosed as HC at baseline and progressed to MCI or AD dementia.
3. Stable MCI (sMCI) subjects who were diagnosed as MCI throughout the follow-up period.
4. Converter MCI (cMCI) subjects who were diagnosed as MCI at baseline and progressed to AD dementia.
5. AD subjects who were diagnosed as AD at baseline.

We initially selected subjects having at least two acquisitions and we created several datasets as starting points. 
Tables 1 and 2 provide descriptive statistics of our initially selected longitudinal samples.

The datasets used for the different analyses were:

1. Dataset 1 consisted of all the available data from the 4 timepoints, as described in Tables 1 and 2 (N = 1250 
subjects).

2. Dataset 2 was a reduced version of dataset 1 containing only sMCI and cMCI subjects (N = 680 subjects).
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3. Dataset 3 was a homogeneous balanced database. We selected from dataset 1, subjects with 4 timepoints 
available. Demographics for this database are summarized in Table 3 (N = 670 subjects).

4. Dataset 4 is a reduced version of dataset 3 containing only sMCI and cMCI subjects (N = 373 subjects).

Implementation of LME models. As there is not a fixed rule for choosing the number of random effects 
in LME, we evaluated two different models. Both models included the Intercept term, or group-mean, as a ran-
dom effect. For the first LME model, the fixed effects were: time from baseline, group, group-by-time interac-
tion, baseline age, sex, APOE status, APOE-by-time interaction and ICV. For the second LME model, the slope 
(measured as time from baseline) was also included as a random effect and the rest of variables were left as fixed 
effects (see Supplementary Material for details). The selection of the variables to be included in the models was 
done mimicking the analysis performed by Bernal-Rusiel et al. and according to previous AD  literature29,30. HV 
(the outcome variable of our model) and ICV (a fixed effect variable of the model) variables were standardized 
to zero mean and standard deviation of one, using Fisher’s Z norm, to ensure that the estimated coefficients are 
all on the same scale and therefore the corresponding effect sizes are comparable.

Statistical inference. We first studied which of the two proposed LME models were more appropriate for 
our sample using the frequentist approach with ANOVA and the Akaike Information Criteria (AIC). We used 
an ANOVA with χ2 test on the model parameters and coefficients estimated for both models and we assessed the 
significance with the likelihood ratio  test31.

We then used frequentist statistical inference to test some of the well-known research questions in the AD 
field. For that, we created a set of contrasts using F-tests and using Satterthwaite’s  method32 to compute the 
degrees of freedom. The contrasts studied were:

1. Are there differences across the 5 groups? (i.e., ANOVA main effect).
2. Are there differences between sMCI and cMCI?
3. Are there differences between cMCI and AD?

Table 1.  Characteristics of the longitudinal ADNI sample used. Baseline age values are in mean ± standard 
deviation. M = male, F = female, nc = non-carriers, c = carriers. p-values indicate differences between group. We 
used ANOVA for baseline age, and Fisher’s exact test for the other data.

Variable sHC cHC sMCI cMCI AD p-value

N 273 78 361 319 219

Baseline age (years) 74.3 ± 5.7 76.2 ± 5.1 72.9 ± 7.4 72.4 ± 7.5 74.7 ± 7.9 0.19

Sex (M/F) 142/131 40/38 212/149 184/135 123/96 0.41

APOE-e4 (nc/c) 207/66 52/26 203/158 121/198 64/155  < 0.0005

Table 2.  Number of scans per time point by clinical group and time between scans. Time from baseline values 
are in mean ± standard deviation.

Time point sHC (N) cHC (N) sMCI (N) cMCI (N) AD (N) Time from baseline (years)

Baseline 273 78 361 319 219 0.00

Year 0.5 243 71 326 274 187 0.51 ± 0.05

Year 1 234 70 294 275 173 1.01 ± 0.06

Year 2 206 61 233 240 97 2.02 ± 0.08

Table 3.  Characteristics of the balanced longitudinal ADNI sample used. Baseline age values are in 
mean ± standard deviation. M = male, F = female, nc = non-carriers, c=carriers. p-values indicate differences 
between group. We used ANOVA for baseline age, and Fisher’s exact test for the other data.

Variable sHC cHC sMCI cMCI AD p-value

N 172 53 187 186 72

Baseline age (years) 74.2 ± 5.6 76.1 ± 5.4 72.0 ± 6.9 71.6 ± 7.6 74.2 ± 7.9 0.004

Sex (M/F) 96/76 24/29 104/83 107/79 40/32 0.62

APOE-ɛ4 (nc/c) 133/39 33/20 116/71 72/114 21/51  < 0.0005
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4. Are there differences between sHC and sMCI?
5. Are there differences between sHC and AD?
6. Are there differences between sHC and cMCI?
7. Are there differences between sHC and cHC?

We evaluated the LME model and tested these 7 contrasts in the datasets described previously (note that with 
dataset 2 or 4 we could only test contrast 1).

For the BLME approach, we also used the LME model with two random factors (the intercept and the slope). 
Posterior distribution measures regression parameters ß and contains all the information for statistical inference. 
We used the Credible Intervals (CrI) of this posterior distribution to study group differences. The CrI differ 
from the well-known Confidence Intervals (CI) in the fact that they are based in the uses of prior information 
and allow direct inferences about plausibility. Thus, CrI need the use of prior information to be estimated and 
can be interpreted as the probability in terms of  plausibility33. We considered the four datasets and the same 7 
contrasts described above.

All analyses were implemented in software R (https:// www.r- proje ct. org), version 3.6.2. For the LME model 
we used the lme4  package34 and the rstan  package35, so we combined R and Stan (https:// mc- stan. org/) languages. 
The code for these analyses is available at https:// github. com/ Agnes2/ LME- with-a- Bayes ian- and- Frequ entist- 
Appro aches. git.

Simulation of real‑life databases. Firstly, with the aim to provide a recommendation of the minimum N 
needed in these studies, we performed sequential simulations on the databases. We followed the scheme shown 
in Fig. 1a. We started from either dataset 1 (all groups) or dataset 2 (only MCI). We randomly selected one sub-
ject and we removed it (all its time points) from the dataset. Then we re-estimated the LME model, and we calcu-
lated the contrast of interest. This was repeated until the stopping criterion was met. At this point, we stored the 
last significant database, as a borderline significant dataset. Here, the stopping criterion was set at p-value > 0.05. 
This procedure was performed with dataset 1 (i.e., minimum N to differentiate across the 5 groups) and dataset 
2 (i.e., minimum N to differentiate between sMCI and cMCI).

Further, with the aim to evaluate another typical situation in these studies, we also tested the effect of missing 
timepoints. We started from dataset 3 (full balanced data) or dataset 4 (MCI balanced data), and we proceeded 
as shown in Fig. 1b. First, we randomly selected one subject’s time point of the sample and we removed it. We 
then estimated the FLME model, and we performed the corresponding statistical inference. We progressively 
removed time points from different subjects until the stopping criterion was met, and, as above, the last data-
base was kept as a borderline significant database. The stopping criterion was set at p-value > 0.05. However, it 
should be mentioned that the FLME model cannot handle having more subjects’ samples than random effects. 
Therefore, this restriction was added as an additional stopping criterion. The random effects were measured as 
N × 2 subjects’ samples, as we had a FLME model with randomly varying intercept and slope.

All the simulations were repeated over 500 iterations to account for the random selection of the subjects/
timepoints to be removed at each step, leading to 500 borderline significant databases.

We applied BLME to the most compromised datasets found with FLME and we studied its behavior. Here, we 
performed a descriptive analysis in the borderline situations found with FLME. For that, we studied the obtained 
borderline datasets with the BLME model to estimate if they remained significant in the Bayesian framework 
and to evaluate the potential clinical interpretations that could be derived from them in terms of relevance.

Figure 1.  Simulations’ scheme (a) Strategy for minimum N simulations. The initial data is dataset 1 or dataset 
2. (b) Strategy of the simulation of missing time points. RE= random effects.

https://www.r-project.org
https://mc-stan.org/
https://github.com/Agnes2/LME-with-a-Bayesian-and-Frequentist-Approaches.git
https://github.com/Agnes2/LME-with-a-Bayesian-and-Frequentist-Approaches.git
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Results
Statistics on ADNI longitudinal databases. Of the two possible LME models to fit our data—one with 
the intercept as a random effect and another with intercept and slope as random effects—we found that the second 
one performed better for explaining our data. This was verified by the results of the ANOVA (p-value <<< 0.001) 
and by comparing their AIC values (1546.2 vs 1411.7). Therefore, all further analyses were performed with this 
model. To obtain comparable results, we also used intercept and slope as random effects in the BLME model.

We applied the FLME model followed by a set of F-tests to evaluate the contrasts of interest in the four data-
bases described above. Results are shown in Table 4, and they reproduce previous reports on the field (as those 
presented in Ref.1 ). Mainly, we found significant differences in HV (p-value < 0.05) between all the five clinical 
groups, between sMCI and cMCI, between sHC and AD and between sHC and cMCI for the four initial data-
sets configurations. All these differences remained significant after correcting for multiple comparisons using 
Bonferroni (n = 7 tests, p-value < 0.05/7).

After fitting the BLME model, we obtained the joint posterior probability of the parameters. Here, we were 
interested in the posterior probability distribution for the ßs, and we used the interval from 2.5th to 97.5th per-
centiles to obtain the 95%  CrI36. We focused on the ßs that represented change over time for the different groups 
(with sHC being the reference group). Results for dataset 1 are shown in Table 5. We found that the effect of 
time was significant (i.e., the 95% CrIs did not contain zero) for cMCI and for AD, while it was not significant 
for cHC and sMCI. When comparing groups, which not contain the reference group, we considered that there 
were differences when the corresponding CrI did not overlap. The contrasts with significant differences are the 
same as those depicted by the FLME approach.

Finding compromised datasets with FLME. Minimum N simulations. By evaluating the 500 data-
bases obtained from the procedure described in Fig. 1a and starting from dataset 1, we found that the minimum 
N needed to differentiate the five clinical groups (with p-value < 0.05) using the HV measure was N = 147 ± 73 
overall. As the removal process followed a random order, the number of subjects within each group was not fixed 
by the algorithm. The group distribution resulting from the 500 databases is shown in Fig. 2a.

Similarly, with the same procedure and starting from database 2, we found that the minimum N needed to 
differentiate cMCI and sMCI using HV measures was N = 115 ± 64 overall. The distribution of the groups within 
the 500 obtained databases is shown in Fig. 2b.

Missing points simulations. For these simulations, in both cases (starting from database 3 and database 4), we 
rapidly encountered that the limitation of number of samples < number of random effects. Thus, evidencing the 
low robustness of FLME approaches with highly unbalanced data.

Table 4.  Summary of the null hypotheses tested and results of the statistical inference. *Indicates 
p-value < 0.05 (Bonferroni corrected).

Contrast
Dataset 1
F, p

Dataset 2
F, p

Dataset 3
F, p

Dataset 4
F, p

sMCI vs cMCI 39.2
5.6 ×  10–10 *

36.1
3.2 ×  10–9*

31.8
2.5 ×  10–8*

24.2
1.3 ×  10–6*

All groups 22.8
4.1 ×  10–18 * – 15.1

8.5 ×  10–12* –

AD vs cMCI 2.0
0.2 – 0.2

0.6 –

sHC vs sMCI 2.3
0.1 – 1.0

0.3 –

sHC vs AD 53.8
4.1 ×  10–13* – 27.7

1.9 ×  10–7* –

sHC vs cMCI 53.4
5.7 ×  10–13* – 40.4

3.8 ×  10–10* –

sHC vs cHC 2.3
0.1 – 2.7

0.1 –

Table 5.  Estimation and 95% Credible Intervals (CrI) of the ßs of interest LME model fitted with a Bayesian 
approach. CrI borders are expressed as the 2.5% and 97.5% percentiles. *Indicates that the effect is significant 
(i.e., CrI does not contain zero).

Parameter Interpretation Estimate 95% CrI

ß11 cHC × time  − 0.03  − 0.06 0.01

ß12 sMCI × time  − 0.02  − 0.04 0.01

ß13 cMCI × time  − 0.08  − 0.11  − 0.06*

ß14 AD × time  − 0.11  − 0.13  − 0.08*
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By analysing the database 3 (initial N = 670 with 4 time points per subject), with the process described in 
Fig. 1b, the simulations stopped at N = 612 ± 9 subjects (with different number of time points per subject), except 
from 3 iterations that did not converge into a failing database considered as outliers. At the moment that it was 
impossible to estimate the FLME model we had a mean of 2 missing time points per subject.

Similarly, with the same procedure and starting from database 4 (initial N = 373 with 4 time points per subject) 
we found that the simulations stopped at N = 341 ± 7 except from 45 databases that did not stop. At the point 
that it was impossible to estimate the FLME model we had again a mean of 2 missing time point per subject.

Evaluating compromised datasets with BLME. Minimum N simulations. We studied the behaviour 
of BLME approach on different datasets obtained from the frequentist simulations of the minimum N. We first 
picked 10 different databases depicting differences across the 5 clinical groups, but that were at the limit for 
significance. These were randomly selected from the 500 iterations of the FLME experiments (the full character-
istics of these databases are described in Supplementary Material). When studied with a BLME approach, 9 of 
them showed differences across the 5 groups. Figure 3a represents two of the datasets obtained in the simulation 
of the minimum N. Then, we selected 10 databases obtained from the simulations with dataset 2 (i.e., minimum 
N to find differences between sMCI and cMC). In this case, only 2 datasets remained significant when studied 
with the BLME approach. Figure 3b shows an example of the datasets obtained with the simulation of the mini-
mum N.

Missing points simulations. To estimate the FLME model with a frequentist approach we encountered a practi-
cal limitation inherent to the model: the need to have more samples than random effects. Here, we selected 10 
databases, from the FLME simulations, at the point that they no longer met the requirement. Thus, with these 
databases it was impossible to estimate a FLME model. The full characteristics of these databases are described 
in Supplementary Material. We studied with a BLME model these 10 databases. We found that the model can be 
estimated, and that all the databases depicted differences across the 5 groups (see Supplementary Material). For 
the 10 stopping databases created from the simulations with dataset 4 we found similar results (see Supplemen-
tary Material), we could estimate the model and present differences for sMCI vs cMCI. Figure 3c,d represents 
Dataset 3 and 4 with one example of the datasets obtained after the missing points simulations for each situation.

Discussion
In this study, we explored large longitudinal neuroimage datasets obtained from ADNI to study trajectories of 
hippocampal volume change in AD. For that, we created LME models under the frequentist and the Bayesian 
frameworks. We found that both approaches have similar behavior in finding differences with the entire data-
base. In the minimum N simulations, the Bayesian approach was slightly stricter to significance when reducing 
data size. In addition, our results indicated that the Bayesian approach is more robust to unbalanced and sparse 
databases with different number of measurements across subjects.

Firstly, our investigation supports the use of LME approaches to model longitudinal data. The results of our 
null hypotheses testing agreed with those reported previously in AD for the  hippocampus1,2. Additionally, we 
provide evidence of the utility of these apparently more complex analyses to study compromised datasets with 
different time points for across subjects.

The frequentist approach allowed us to implement a method for testing the relationship between the sample 
characteristics (size and missing points) and the expected group differences. Even considering that the statisti-
cal threshold (here p < 0.05) may be rather arbitrary  (see37,38), it is important to note that this was chosen as a 
controlled systematic approach to study the behavior of the databases when removing subjects, with the ultimate 

Figure 2.  Distribution of subjects within each group for all the obtained databases (a) minimum N simulation 
across five clinical groups (b) minimum N simulation across MCI group.
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goal to evaluate the behavior of both approaches in different scenarios. To our knowledge, there are no previous 
studies addressing similar questions with neuroimaging data.

In a further step, we aimed to explore the utility of Bayesian statistics combined with LME modelling. It has 
been suggested that Bayesian approaches could complement the findings obtained with frequentist analyses, 
as they provide a more interpretable framework. Bayesian models are based on the direct estimation from the 
population distribution represented by the posterior distribution, instead of estimating from the hypotheti-
cal sampling distribution as it happens in the frequentist  approach13. In this context, our BLME model can be 
interpreted in a probabilistic way and may offer a more direct interpretation in clinical settings than  FLME13,14. 
Contrarily, the FLME approach does not accept probabilistic interpretation although many researchers use them 
to interpret their  results39. As we observed when testing large databases, the two approximations of LME model 
often led to similar conclusions. Indeed, our results in terms of statistical significance support previous research 
on the role of HV as a biomarker for AD, being highly significant across groups and between converters and 
non-converters. However, when repeating all comparisons with BLME, we aimed to add clinical relevance to the 
above significance statement. This was more evidenced when studying compromised datasets. That is, by using 

Figure 3.  Hippocampus volume versus age. Top plots (a,b) represent dataset 1 (a) and 2 (b) with initial N. 
Bottom plots (a,b) represent four different databases obtained after the simulation of minimum N, resulting 
significant for frequentist and Bayesian approaches and only for frequentist approach. Top plots (c,d) represent 
dataset 3 (c) and 4 (d). Bottom plots (c,d) represent different databases obtained after the simulation of missing 
time points, being only estimable for Bayesian approach.
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posterior distributions, longitudinal analyses can be better adapted to real-life datasets with clinical relevance. 
Overall, we emphasize the need of knowing the characteristics of the sample to be able to infer the correct 
interpretation of the results. For example, it is known that with a non-informative prior, Bayesian approaches 
tend to mimic frequentist results from the numerical point of  view11. Little by little more studies use Bayesian 
approaches in the context of neuroimaging and dementia. In a similar context, Cespedes et al. demonstrated that 
the use of BLME can be useful for estimating atrophy rates in The Australian Imaging, Biomarker & Lifestyle 
Flagship Study of Ageing cohort (AIBL) (https:// aibl. csiro. au). Bayesian statistics were used in the ADNI data-
base in a latent time joint mixed-effects model to provide a continuous alternative to clinical  diagnosis40. And, 
in a more complex approach, the authors implemented a multi-task Bayesian learning algorithm on the ADNI 
database to model trajectories of biomarkers at the individual  level9. Although these studies clearly differ from 
ours, they support the use of Bayesian approaches in clinical contexts. In addition, Bayesian statistics appear as 
a good framework to solve clinically relevant questions that cannot be addressed with frequentist approaches. 
For example, the absence of  effects10.

We calculated the minimum sample size that led to significant group differences with FLME, and we obtained 
values (overall values for the studied groups) of 147 and 115 for all groups and for MCI conversion to dementia 
respectively. It should be mentioned that the main goal of this study was not sample size estimation and thus, 
these values are rather indicative, in the sense that they are restricted to the research questions and the measure 
used in this study. However, we believe that they can be of interest in the context of clinical trials. In a study with 
frontotemporal dementia, Staffaroni et al. calculated the estimated sample size using bootstrapping techniques 
for different cognitive and imaging measures and they obtained values from < 100 to > 500 depending on the 
measure or combination of measures  chosen41.

By studying highly compromised datasets (those at the border classical frequentist significance at 
p-value < 0.05), we were able to compare the two approaches. Notably, not all the borderline databases identi-
fied with FLME (i.e., p-value nearly 0.05) remained significant with the BLME approach. This may be due to 
the fact that accurate modelling of the variances in the Bayesian framework led to more restrictive statistics. It 
should be mentioned that the ADNI database is quite heterogeneous as do not have the same time point for each 
subject and that our analyses did not control for some external covariates such as different centers and scanners 
that might add variability.

In addition, it should be noted that our strategy for comparing approaches was based on selecting the datasets 
with FLME followed by the evaluation of significance with BLME. This strategy allowed us to obtain important 
insights as regards significance and interpretability for longitudinal modelling. However, the above conclusions 
are restricted to this and should not be generalized to any dataset.

The other group of simulations that we implemented was related to databases with missing points. In this 
sense, an important drawback for FLME modelling is the need of having more subjects’ samples than random 
effects for the model to be estimated. In practice, this was the main reason for stopping in these simulations. 
Instead, the Bayesian approach allowed estimating the LME model even with high number of missing points in 
the database. More specifically, our results show that the BLME model is feasible in a 4-timepoint database that 
has approximately 2 missing values for each subject, suggesting that the Bayesian framework should be chosen 
for longitudinal modelling in sparse databases. Other studies have demonstrated that Bayesian statistics overcome 
some of the limitations of classical statistical inference in non-homogeneous  databases3.

Our study has several limitations. First, one difficulty of using the Bayesian approach is its complexity in 
computing posterior distributions used to estimate the CrI. This has historically imposed an important  barrier13. 
Although software solutions have improved in the last years, the frequentist approach is still computationally 
easier. Further studies should explore the utilization of Markov Chain Monte Carlo approaches to overcome 
this limitation. Due to this high computational cost of the BLME, the implementation of a method for testing 
sequential data removal with BLME was out of reach of this study. Second, the current study is based on the HV 
measure, and the conclusions are specific for this. To be able to generalize our conclusions to broader contexts, 
other MRI biomarkers for AD, and eventually other databases, should be studied. Third, in the ADNI dataset, 
there are acquisition differences (i.e., different scanners) which were not included in the analyses. This could 
have an impact on the HV measurements. Finally, the clinical diagnosis available in the ADNI dataset does not 
systematically include CSF validation, which, according to the latest MCI diagnostic  criteria42,43, may result in 
some subjects wrongly labelled as HC or MCI. Other sources of misclassification (or confusing diagnosis) refer 
to the fact that other pathologies may coexist in subjects diagnosed with AD and that different AD subtypes 
show different biomarker trajectories. Our results did not account for misdiagnosis nor subgrouping, as ground 
truth labels were not available. We believe that further studies, possibly using unsupervised machine learning, 
could account for these factors.

Data availability
Publicly available datasets were analyzed in this study. This data can be found at: adni.loni.usc.edu.

Code availability
Analyses code is available at https:// github. com/ Agnes2/ LME- with-a- Bayes ian- and- Frequ entist- Appro aches. git.
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